Abstract

It has been previously suggested that there is a conservative program for neural development amongst the arthropods, on the basis that a stereotyped set of cells involved in establishing the axon tracts in the CNS of insect embryos is also present in crayfish embryos. We have examined the spatiotemporal pattern of axon growth from a set of early differentiating central neurons in the embryo of two crustaceans, the woodlouse Porcellio scaber and the freshwater crayfish Cherax destructor, and drawn comparisons with insect neurons whose somata lie in corresponding positions within the CNS. While many of the woodlouse and crayfish neurons show a similar pattern of axon growth to their insect counterparts, the axon trajectories taken by others differ from those seen in insects. We conclude that this aspect of early neural development has not been rigidly conserved during the evolution of the crustaceans and insects. However, the extent of similarity between the insects and the crustaceans is consistent with the idea that these groups of arthropods share a common evolutionary 'Bauplan' for the construction of their nervous systems. While the pattern of early axon growth in the woodlouse and crayfish embryos is sufficiently similar that many neurons could be confidently recognised as homologues, several differences were noted in both the relative order of axon outgrowth and axon morphologies of individual neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.