Abstract

Scalar transport and mixing by active turbulence in a high Reynolds number inhomogeneous stratified shear layer are investigated using three-dimensional Direct Numerical Simulation. Two density profiles are considered: (i) two layers of homogenous fluid with different density, namely the two-layer case, and (ii) a continuously stratified background ambient, namely the Jd case. The evolution of the mixing layer includes shear instability, formation of Kelvin–Helmholtz rollers, transition to turbulence, fully developed active turbulence, and, finally, decay toward a laminar state. In the Jd case, internal gravity waves carrying momentum and energy are observed to propagate away from the shear layer. Although different during the initial evolution, the eddy diffusivity and mixing efficiency when plotted as a function of buoyancy, Reynolds number takes similar values between the two cases later in time during the stage when turbulence decays. During this stage, the mixing efficiency computed based on the buoy...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call