Abstract

In this paper, we describe the problem of describing the transport and catalytic kinetics at immobilized enzymes in an electronically conductive polymer thin film where substrate inhibition is important. Here, the enzyme kinetics are not well described by the Michaelis-Menten equation. We describe a mathematical procedure based on the recently developed Akbari-Ganji method (AGM) which facilitates a full analytical solution of the boundary value problem which is valid for all values of substrate concentration. Closed form expressions for both the substrate concentration in the film and the steady-state amperometric current response are presented. Limiting kinetic cases are identified and are expressed pictorially in parameter space using a kinetic case diagram.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call