Abstract
Martensitic and super martensitic stainless steels are widely used in the oil and gas industry for general corrosion mitigation in the presence of sweet corrosion (CO2) and sour corrosion (H2S), providing a cost-effective alternative to more expensive exotic corrosion-resistant alloys. Martensitic stainless steel is an approved material for construction when selecting tubular CO2 injection wells. This work aims to review the published literature on the subject of the operation limits of martensitic stainless steel and super martensitic stainless steel in high temperatures and high pressure under corrosive environments. Stress corrosion cracking (SCC) and sulfide stress corrosion cracking (SSCC) mechanisms on martensitic and super martensitic stainless steel surfaces are thoroughly analyzed. In this review paper, we have analyzed the factors that play a crucial role in passive film growth and passivity breakdown. The present work is to review the state of the art of mechanism responsible for SCC and SSCC susceptibility in different modified martensitic stainless steel materials, which are applied to the industry and lab scale. We have reviewed the effect of different concentrations of molybdenum content on SCC and SSCC susceptibility of conventional martensitic stainless steel, modified martensitic stainless steel, and super martensitic stainless steel. The effect of tempering temperature on the SCC and SSCC performance of the martensitic and super martensitic stainless steel was also studied. We also studied the effect of different concentrations of chromium on the improved corrosion-resistant properties and stability of passivation film.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.