Abstract

AbstractAlfvén mode Pc1 waves undergo mode conversion to the fast mode due to induced Hall current in the ionosphere. The fast mode Pc1 waves are trapped and propagate across the magnetic field through the ionospheric waveguide. This process is called Pc1 wave ducting (PWD). Ducting is expected to be in any direction, but most of the existing literature investigated only PWDs toward the equator. In this paper, we report the rare observations of PWD propagating from sub‐auroral latitudes and pervading the polar cap using Swarm satellites, ground magnetometers, and Defense Meteorological Satellite Program (DMSP) satellites. We first identify the injection region of Pc1 wave where localized broadband transverse waves, isolated aurora, and energetic proton precipitations are concurrently observed. Then, we compare ducting characteristics in the ionosphere between the two hemispheres. For the three events investigated here, PWDs in the Southern Hemisphere (SH) pervaded the polar cap while Pc1 waves in the Northern Hemisphere (NH) did not. This hemispheric asymmetry is attributed to the plasma density in the SH sufficient to form the Pc1 waveguide. However, a sharp plasma density gradient on the propagation path still interrupts the ducting even in higher plasma density () regions. The observation of two intersecting Swarm satellites indicates the PWD is not only elongated meridionally, but also can have a significant zonal extent beyond that of the injection region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call