Abstract
A variety of immortalized cell lines have been proposed to exhibit sufficient phenotypic plasticity to allow them to replace primary embryonic neurons for restorative cell transplantation. In the present experiments we evaluate the functional viability of one particular cell line, the hNT cells developed by Layton Bioscience, to replace lost neurons and alleviate asymmetrical motor deficits in a unilateral excitotoxic lesion model of Huntington's disease. Because the grafts involved implantation of human-derived cells into a rat host environment, all animals were immunosuppressed. Cyclosporin A and FK-506 were similar in providing effective immunoprotection of the hNT xenografts, and whereas the lesions induced a marked inflammatory response in the host brain, this was not exacerbated by the presence of xenograft cells. The presence of grafted cells was determined with the human-specific antigen HuNu, and good graft survival was demonstrated in almost all animals up to the longest survival examined, 16 weeks posttransplantation. Although the cells exhibited progressively greater maturation and differentiation at 10-day, 4- and 16-week time points, staining for the mature neuronal marker NeuN was at best very weak, and we were unable to detect unequivocal staining with any markers of mature striatal phenotype, including DARPP-32, calbindin, parvalbumin, choline acetyl transferase, or NADPH diaphorase (with in all cases positive control provided by good staining on the intact contralateral side of the brain). Nor were we able to detect any differences between rats with lesions alone and rats with grafts in the contralateral motor deficits exhibited in a test of skilled paw reaching or cylinder placing. These results suggest that further and more extensive studies should be undertaken to assess whether hNT neurons can show more extensive and appropriate maturation and be associated with recovery in appropriate behavioral models, before they may be considered a suitable replacement for primary embryonic cells for clinical application in Huntington's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.