Abstract

Fetal striatal tissue transplants have been shown to restore motor deficits in rat and monkey models of Huntington's disease (HD). In the present study, using rats with unilateral striatal lesions, we compared fetal striatal tissue transplants to transplants of human NT (hNT) neurons. hNT neurons are terminally differentiated cells derived from the human NTera-2 cell line. In vitro, we have found that purified hNT neurons have a biochemical phenotype similar to that of human fetal striatal tissue. Both hNT neurons and fetal striatal tissue express mRNAs for glutamic acid decarboxylase, choline acetyltransferase, and the D1 and D2 dopamine receptors. Grafts of either hNT neurons or fetal striatal tissue into unilateral quinolinic acid-lesioned rat striatum improved methamphetamine-induced circling behavior. Sham controls showed no changes in methamphetamine-induced circling behavior. In the staircase test for skilled forelimb use, both transplant groups showed partial recovery in skilled use of the paw contralateral to the side of lesion, whereas the control animals showed continued deficits. These findings suggest that transplantation of hNT neurons may be an alternative to transplantation of fetal striatal tissue in the treatment of HD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call