Abstract

Dialysis and allotransplantation of human kidneys represent effective therapies to replace kidney function, but the former replaces only a small component of renal function, and the latter is limited by lack of organ availability. Xenotransplantation of whole kidneys from nonprimate donors is complicated by humoral and severe cellular rejection. The use of individual cells or groups of cells to repair damaged tissue (cellular therapies) offers an alternative for renal tissue replacement. However, recapitulation of complex functions such glomerular filtration and reabsorption and secretion of solutes that are dependent on a three-dimensionally integrated kidney structure are beyond the scope of most cellular replacement therapies. The use of nonvascularized embryonic renal primordia for transplantation circumvents humoral rejection of xenogeneic tissue and ameliorates cellular rejection. Renal primordia are preprogrammed to attract a vasculature and differentiate into a kidney and in this manner undergo organogenesis after transplantation into the mesentery of hosts. Here we review a decade's progress in renal organogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call