Abstract

One of the most devastating effects of damage to the upper spinal cord is the loss of the ability to breathe; patients suffering these injuries can be kept alive only with assisted ventilation. No known method for repairing these injuries exists. We report here the return of supraspinal control of breathing and major improvements in climbing after the application of a novel endogenous matrix transfer method. This method permits efficient transfer and retention of cultured adult rat olfactory ensheathing cells when transplanted into large lesions that destroy all tracts on one side at the upper cervical level of the adult rat spinal cord. This demonstrates that transplantation can produce simultaneous repair of two independent spinal functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.