Abstract

Several experiments were conducted with tropical tree and liana seedlings in which transpiration ratio and leaf phosphorus to carbon ratio (P:C) were measured. Transpiration ratio was expressed as kg H(2)O transpired&emsp14;g(-1) C incorporated into plant biomass, and leaf P:C as mg P&emsp14;g(-1) C. Leaf P:C was positively correlated with transpiration ratio across 19 species for plants grown under similar conditions (R(2) = 0.35, P < 0.01, n = 19). For five species in the dataset, multiple treatments were imposed to cause intra-specific variation in transpiration ratio. Within four of these five species, leaf P:C correlated positively with transpiration ratio. The slope and strength of the correlation varied among species. In one experiment, whole-plant P:C was measured in addition to leaf P:C. Patterns of correlation between whole-plant P:C and transpiration ratio were similar to those between leaf P:C and transpiration ratio. Together, these observations suggest that transpiration can influence the rate of P uptake from soil in tropical tree and liana seedlings. We suggest that this occurs through transport of inorganic phosphate and organic P compounds to root surfaces by transpiration-induced mass flow of the soil solution. The positive correlation between leaf P:C and transpiration ratio suggests that leaf P:C could decline in tropical forests as atmospheric CO(2) concentration rises, due to decreasing transpiration ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.