Abstract

The fluorination of self-standing graphene oxide (GO) films under mild conditions at 70 °C for 1h using a mixture of elemental fluorine and nitrogen gases (0.35 F2/0.65 N2 v/v) results in transparent, highly fluorinated (F/C = 1 as seen by XPS) graphene oxide (FGO) films which maintain initial densely packed structure and mechanical strength. Most of the oxygen atoms in the GO film were replaced by fluorine after fluorination, and two types of carbon-fluorine bonds coexist, i.e. primarily weakened C⋯F bonds and also pure covalent C–F bonds as evidenced by FTIR, XPS, NMR, and cyclic voltammetry when FGO is used as electrode in Li/electrolyte (PC:EC:3DMC/LiTFSI 1 M)/FGO cell similar to a lithium battery. To further understand the fluorination mechanism and to distinguish the reaction steps, xenon difluoride XeF2 was used as fluorinating agent for GO and in situ EPR and FTIR analyses suggest hydroxyl groups as preferential reactive sites. These self-standing transparent FGO films exhibit unusual electrochemical properties in lithium battery and can be used as hydrophobic lubricant membranes because of the low and stable coefficient of friction evidenced in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.