Abstract
Thin film transistors on paper are increasingly in demand for emerging applications, such as flexible displays and sensors for wearable and disposable devices, making paper a promising substrate for green electronics and the circular economy. ZnO self-assembled thin film transistors on a paper substrate, also using paper as a gate dielectric, were fabricated by pulsed electron beam deposition (PED) at room temperature. These self-assembled ZnO thin film transistor source-channel-drain structures were obtained in a single deposition process using 200 and 300 µm metal wires as obstacles in the path of the ablation plasma. These transistors exhibited a memory effect, with two distinct states, "on" and "off", and with a field-effect mobility of about 25 cm2/Vs in both states. For the "on" state, a threshold voltage (Vth on = -1.75 V) and subthreshold swing (S = 1.1 V/decade) were determined, while, in the "off" state, Vth off = +1.8 V and S = 1.34 V/decade were obtained. A 1.6 μA maximum drain current was obtained in the "off" state, and 11.5 μA was obtained in the "on" state of the transistor. Due to ZnO's non-toxicity, such self-assembled transistors are promising as components for flexible, disposable smart labels and other various green paper-based electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.