Abstract

Self-powered flexible sensors play an increasingly important role in wearable and even implantable electronic devices. Silk protein is an ideal material for flexible sensors because of its terrific biocompatibility and controllable degradation rate. Here, we overcome the problem of mechanical flexibility and poor electrical conductivity of proteins, and develop a highly transparent, biocompatible, full-degradable and flexible triboelectric nanogenerator (Bio-TENG) for energy harvesting and wireless sensing. First, the mechanical flexibility of the silk protein film is greatly enhanced by the mesoscopic functionalization of regenerated silk fibroin (RSF) via adding glycerol and polyurethane (PU). Second, hollow silver nanofibers are constructed on the silk film to form an air-permeable, stretchable, biocompatible and degradable thin layer and utilized as friction electrode. The obtained Bio-TENG demonstrates high transparency (83% by one Ag gird layer), stretchability (Ɛ = 520%) and an instantaneous peak power density of 0.8 W m−2 that can drive wearable electronics. Besides, the Bio-TENG can work as artificial electronic skin for touch/pressure perception, and also for wirelessly controlling Internet of Things as a switch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call