Abstract
Making transparent aromatic polymers with high Tg and low thermal expansion behavior, like glass, is challenging. We report transparent and soluble poly(amide-imide)s (PAIs) with high dimensional stability synthesized from the new monomer, trifluoromethylated trimellitic anhydride. Insertion of trifluoromethyl (CF3) groups into polymer chains enhanced solubility and the optical properties of polymers without sacrificing high thermal stability. Model reactions were utilized to study how the CF3 group in trimellitic anhydride affects the polymerization reaction with aromatic diamine monomers, and a series of new PAIs were synthesized. All the polymers were soluble in polar organic solvents and can be solution-cast into nearly colorless and flexible freestanding films. The obtained PAI films possessed high thermal stability (Td5: 437–452 °C in N2) and high transparency (84~87% transmittance at 550 nm). Interestingly, PAIs prepared in this study exhibited high thermodimensional stability with low CTE values from 9 to 26 ppm/°C. The transparent poly(amide-imide) film with low CTE value finds its application in display and optical devices that require flexible and transparent form factors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have