Abstract

Thermal losses in photoelectric devices limit their energy conversion efficiency, and cyclic input of energy coupled with pyroelectricity can overcome this limit. Here, incorporating a pyroelectric absorber into a photovoltaic heterostructure device enables efficient electricity generation by leveraging spontaneous polarization based on pulsed light-induced thermal changes. The proposed pyroelectric-photovoltaic device outperforms traditional photovoltaic devices by 2.5 times due to the long-range electric field that occurs under pulse illumination. Optimization of parameters such as pulse frequency, scan speed, and illumination wavelength enhances power harvesting, as demonstrated by a power conversion efficiency of 11.9% and an incident-photon-to-current conversion efficiency of 200% under optimized conditions. This breakthrough enables reconfigurable electrostatic devices and presents an opportunity to accelerate technology that surpasses conventional limits in energy generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.