Abstract

Optically transparent hydrophobic and superhydrophobic coatings have been prepared using polyamide 12–SiO2 nanocomposite (NC) on glass substrates by the spin‐coating method. The coatings have been optimized for their hydrophobicity and transparency. The transformation from hydrophobic to superhydrophobic is achieved with increase in roughness (Ra) which increases with SiO2 content. These coatings are highly transparent in the entire visible region (400–800 nm). The influence of layer thickness on water contact angle (WCA) and optical transmittance of the coatings has been studied. Field emission scanning electron micrograph (FESEM) shows the presence of SiO2 nanoparticles covered with polyamide homogenously on the surface and the particles are aggregated to form a rough structure. X‐ray diffraction (XRD) patterns show that the polyamide losses its crystalline structure in the composite. The preparation procedure reported here is simple and eco‐friendly. The dual nature of the coatings, that is, high transparency and superhydrophobicity in the entire visible region suggests for its potential usage in self‐cleanings, wind screen and optoelectronic applications. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.