Abstract

BackgroundIt has been reported that ventricular repolarization dispersion resulting from transmural, apicobasal and interventricular action potential duration (APD) gradients makes the T wave concordant with the QRS complex. Method and resultsA whole-heart model integrating transmural, apicobasal, interventricular and anteroposterior APD gradients was used, and the corresponding electrocardiograms were simulated to study the influence of these APD gradients on the T-wave amplitudes. The simulation results showed that changing a single APD gradient (e.g., interventricular APD gradient alone) only made substantial changes to the T-wave amplitudes in a limited number of leads and was not able to generate T waves with amplitudes comparable with clinical findings in all leads. A combination of transmural, apicobasal and interventricular APD gradients could simulate T waves with amplitudes similar to clinical values in the limb leads only. Adding the anteroposterior APD gradient into the model greatly improved the consistency between the simulated T-wave amplitudes and the clinical values. ConclusionThe simulation results support that the transmural, apicobasal, interventricular and the anteroposterior APD gradient are all essential to the genesis of the clinical T wave.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call