Abstract

The paper discusses properties of flexural waves in elastic plates constrained periodically by rigid pins. A structured interface consists of rigid pin platonic gratings parallel to each other. Although the gratings have the same periodicity, relative shifts in horizontal and vertical directions are allowed. We develop a recurrence algorithm for constructing reflection and transmission matrices required to characterize the filtering of plane waves by the structured interface with shifted gratings. The representations of scattered fields contain both propagating and evanescent terms. Special attention is given to the analysis of trapped modes which may exist within the system of rigid pin gratings. Analytical findings are accompanied by numerical examples for systems of two and three gratings. We show geometries containing three gratings in which transmission resonances have very high quality factors (around 35 000). We also show that controlled lateral shifts of three gratings can give rise to a transmission peak with a sharp central suppression region, akin to the phenomenon of electromagnetic-induced transparency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call