Abstract

This work reports on the characteristics of the insulator-to-metal transition (IMT) of reactive pulsed laser deposited vanadium dioxide (VO2) films in the terahertz (THz) frequency range, namely the transition temperature TIMT, the amplitude contrast of the THz transmission over the IMT ΔA, the transition sharpness ΔT and the hysteresis width ΔH. XRD analysis shows the sole formation of VO2 monoclinic structure with an enhancement of (011) preferential orientation when varying the O2 pressure (PO2) during the deposition process from 2 to 25mTorr. THz transmission measurements as a function of temperature reveal that VO2 films obtained at low PO2 exhibit low TIMT, large ΔA, and narrow ΔH. Increasing PO2 results in VO2 films with higher TIMT, smaller ΔA, broader ΔH and asymmetric hysteresis loop. The good control of the VO2 IMT features in the THz domain could be further exploited for the development of advanced smart devices, such as ultrafast switches, modulators, memories and sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call