Abstract

Understanding the seasonal patterns of influenza transmission is critical to help plan public health measures for the management and control of epidemics. Mathematical models of infectious disease transmission have been widely used to quantify the transmissibility of and susceptibility to past influenza seasons in many countries. The objective of this study was to obtain a detailed picture of the transmission dynamics of seasonal influenza in Switzerland from 2003 to 2015. To this end, we developed a compartmental influenza transmission model taking into account social mixing between different age groups and seasonal forcing. We applied a Bayesian approach using Markov chain Monte Carlo (MCMC) methods to fit the model to the reported incidence of influenza-like-illness (ILI) and virological data from Sentinella, the Swiss Sentinel Surveillance Network. The maximal basic reproduction number, R0, ranged from 1.46 to 1.81 (median). Median estimates of susceptibility to influenza ranged from 29% to 98% for different age groups, and typically decreased with age. We also found a decline in ascertainability of influenza cases with age. Our study illustrates how influenza surveillance data from Switzerland can be integrated into a Bayesian modeling framework in order to assess age-specific transmission of and susceptibility to influenza.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.