Abstract

Abstract This paper presents a new model of an overhead transmission line for electromagnetic transient computations. The unique feature of the model is the explicit representation of the tower grounding configuration and terminal substation grounds. Other properties of the model are: (1) accurate frequency dependent parameter representation from DC to several MHz; (2) explicit modeling of line asymmetries; and (3) high numerical efficiency. The model implementation is based on the solution of the transmission line differential equations resulting in a set of step response functions, forming a matrix. The step response matrix is utilized in a time domain simulation of electric power networks by a linear convolution scheme. The transmission line model is validated with actual system test data. The model is useful for computing the ground potential rise of transmission towers due to lightning or switching surges, insulation stress, etc. Typical applications are described in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.