Abstract

In this paper, we employ transmission electron microscopy coupled with energy-dispersive X-ray spectrometry (EDS) to study the structure and chemistry of cadmium telluride (CdTe) thin-film solar cells with different extents of degradation. The studied regions originate from the same photovoltaic mini-module, which was subjected to one-sun light exposure at a temperature of 100 °C for 400 h to induce light and heat degradation. EDS maps reveal a discontinuous CdS layer and particles rich in O and S but Te-depleted within the CdTe absorber layer after the light and heat stress. These features could act as enhanced recombination centers, resulting in decreased photovoltaic conversion efficiency. Additionally, the most degraded CdTe sample shows a strong accumulation of Na precisely localized in the discontinuous part of the CdS layer. The local Na concentration is determined to be ∼16 at.%. In addition, appreciable Na accumulation is observed at the soda-lime glass/transparent conductive oxide interface in both degraded CdTe solar cells. The microstructure of the baseline CdTe mini-module with no stress was also investigated to demonstrate that the structure difference was caused by the light- and heat-induced degradation, instead of module fabrication. These results highlight the need to control the distribution of Na in fielded CdTe modules to sustain long-term high-power output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.