Abstract

Four Fe–Cr binary alloys, with Cr content from 2.5 up to 12wt%, were neutron or ion irradiated up to a dose of 0.6 dpa at 300 °C. The microstructural response to irradiation has been characterised using Transmission Electron Microscopy (TEM). Both, neutrons and ions, gave rise to the formation of dislocation loops. The most striking difference between ion and neutron irradiation is the distribution of these loops in the sample. Except for the lowest Cr content, loops are distributed mainly along grain boundaries and dislocations in the neutron irradiated samples. The inhomogeneous distribution of dislocation loops could be related to the presence of α′ precipitates in the matrix. In contrast, a homogeneous distribution is observed in all ion irradiated samples. This important difference is attributed to the orders of magnitude difference in dose rate between these two irradiation conditions. Moreover, the density of loops depends non-monotonically on Cr content in case of neutron irradiation, while it seems to increase with Cr content for ion implantation. Differences are also observed in terms of cluster size, with larger sizes for neutron irradiation than for ion implantation, again pointing towards an effect of the dose rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.