Abstract

Rutile-type GeO2 (r-GeO2) with an ultrawide bandgap of ∼4.7 eV has emerged as a promising material for next-generation power-electronic and optoelectronic devices. We performed transmission electron microscopy (TEM) observation to analyze the structural properties of r-GeO2 film on r-TiO2 (001) substrate at an atomic level. The r-GeO2 film exhibits a threading dislocation density of 3.6 × 109 cm−2 and there exist edge-, screw-, and mixed-type dislocations in the film as demonstrated by two-beam TEM. The edge-type dislocations have Burgers vectors of [100] and/or [110]. The bandgap of the r-GeO2 film is 4.74 ± 0.01 eV as determined by electron energy loss spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.