Abstract

AbstractSun photometric measurements, which provide accurate and timely information on atmospheric components such as aerosols, clouds, and gases are important to climate research. For regions with heavy and variable aerosol loading, the traditional Langley plot method cannot be applied for Sun photometric instrument calibration, as almost no suitable prolonged periods with stable atmosphere and low‐aerosol loading occurs. An improved calibration method, namely, the transmission and division of total optical depth method, is proposed in this study. Atmospheric total optical depth variation information obtained via other methods is transmitted, and period groups with similar atmospheric extinction effects are selected for Langley regression. This method is validated through calibration of a multifilter rotating shadowband radiometer under heavy aerosol‐loading conditions. The obtained aerosol optical depth (AOD) compares well with the interpolated AOD from a Cimel Sun‐sky radiometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.