Abstract
AbstractRecent increase in extreme wildfire events has led to major health and environmental consequences across the globe. These adverse impacts underlined the need for better understanding of this phenomenon and to formulate mitigating actions. While previous research has focused on local weather drivers of wildfires, our knowledge about their large‐scale climatic controls remains limited, especially in tropical Africa, which stands out as a global hotspot for fire emissions. Here, we show that interannual variability of carbon emission due to fires in the southern Congo Basin is strongly linked to low‐level winds that are controlled by the Indian Ocean subtropical high. The interhemispheric transport of these emissions to West Africa relies on the intensity and position of both Indian and South Atlantic subtropical highs. Combined effects of this transport mechanism and carbon production in the source region explain a majority of the interannual variability of black carbon in West Africa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.