Abstract

Neonicotinoids have been banned in some countries because of increased nontarget resistance and ecological toxicity. Cycloxaprid is a potentially promising substitute, but its metabolism in plants is still poorly understood. The study aims to clarify the translocation of cycloxaprid, identify its metabolites, propose possible metabolic pathways and compare differences between enantiomers in oilseed rape via 14C tracing technology and HPLC–QTOF–MS. The results showed that most cycloxaprid remained in the treated leaves, and only a small amount translocated to the anthers. Seven metabolites were identified, and the possible metabolic pathway was divided into two phases. Phase Ⅰ metabolism included two metabolites obtained via cleavage of the oxa-bridged seven-membered ring. Phase II metabolism was responsible for glucose conjugate formation. The possible metabolic pathways revealed that the proportion of phase I metabolites gradually decreased over time, and the phase II metabolites transformed from monosaccharide and disaccharide conjugates to trisaccharide and tetrasaccharide conjugates. The levels of metabolites were significantly different between the enantiomers. In particular, the main metabolite was M4, which has confirmed biological toxicity. M2 was the only metabolite detected in rapeseed. The results will promote the scientific application of cycloxaprid in agriculture and could have implications for assessing environmental risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.