Abstract
A site-specifically modified oligonucleotide containing a single 2'-deoxyribonolactone lesion was used as a template for primer extension reactions catalyzed by M-MuLV reverse transcriptase (RT) and by the Klenow fragments of Escherichia coli DNA polymerase proficient (KF exo(+)) or deficient (KF exo(-)) in exonuclease activity. Analysis of the extension products in the presence of the four dNTPs or of a single dNTP showed that the M-MuLV RT was completely blocked and did not incorporate any dNMP opposite 2'-deoxyribonolactone. KF exo(-) preferentially incorporated nucleotides opposite the lesion following the frequency order dAMP > dGMP >> dTMP approximately dCMP and thus appeared to obey the 'A rule' for preferential incorporation as has been shown previously for the 2'-deoxyribose abasic site. In the sequence context examined, the primer extension by KF exo(-) appeared to be less efficient when dAMP was positioned opposite the lesion as compared with dTMP or dGMP. These two nucleotides promoted a more efficient polymerization accompanied by nucleotide deletion through misalignment incorporations. We therefore predict that the sequence context may strongly influence the translesional synthesis by KF exo(-) and thus the miscoding and mutational potential of the 2'-deoxyribonolactone in E.coli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.