Abstract

Urea (Ua) is produced in DNA as the result of oxidative damage to thymine and guanine. It was previously reported that Klenow fragment (Kf) exo− incorporated dATP opposite Ua, and that DNA polymerase β was blocked by Ua. We report here the following nucleotide incorporations opposite Ua by various DNA polymerases: DNA polymerase α, dATP and dGTP (dATP > dGTP); DNA polymerase δ, dATP; DNA polymerase ζ, dATP; Kf exo−, dATP; Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4), dGTP and dATP (dGTP > dATP); and DNA polymerase η, dCTP, dGTP, dATP, and dTTP (dCTP > dGTP > dATP > dTTP). DNA polymerases β and ε were blocked by Ua. Elongation by DNA polymerases δ and ζ stopped after inserting dATP opposite Ua. Importantly, the elongation efficiency to full-length beyond Ua using DNA polymerase η and Dpo4 were almost the same as that of natural DNA.Graphical abstract

Highlights

  • DNA damage is a major cause of cell death, mutations, cancer, neurological disease, and aging

  • Ua is reportedly repaired by many enzymes [3, 5, 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24], to date there have been only a few investigations into nucleotide incorporation and/or elongation past Ua by DNA polymerases, such as the blockage by Ua of DNA replication by T4 DNA polymerase [4, 25, 26], Klenow fragment (Kf) [4, 25,26,27,28], DNA polymerase I [25], human DNA polymerase β [28], Sequenase 2.0 [28], and AMV reverse transcriptase [28]

  • Under the reaction condition in which DNA polymerase α inserted only dCTP opposite guanine (Fig. 2A, lanes 1–4), dATP and dGTP were inserted opposite Ua, and dTTP and dCTP were not inserted (Fig. 2A, lanes 6–9)

Read more

Summary

Introduction

DNA damage is a major cause of cell death, mutations, cancer, neurological disease, and aging. Ua is reportedly repaired by many enzymes [3, 5, 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24], to date there have been only a few investigations into nucleotide incorporation and/or elongation past Ua by DNA polymerases, such as the blockage by Ua of DNA replication by T4 DNA polymerase [4, 25, 26], Klenow fragment (Kf) [4, 25,26,27,28], DNA polymerase I [25], human DNA polymerase β [28], Sequenase 2.0 [28], and AMV reverse transcriptase [28]. Nucleotide incorporations opposite Ua and translesion synthesis across Ua by DNA polymerases α, δ, ε, η, ζ and Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) have not

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.