Abstract

Translesion synthesis is an important cellular mechanism to overcome replication blockage by DNA damage. To copy damaged DNA templates during replication, specialized DNA polymerases are required. Translesion synthesis can be error-free or error-prone. From E. coli to humans, error-prone translesion synthesis constitutes a major mechanism of DNA damage-induced mutagenesis. As a response to DNA damage during replication, translesion synthesis contributes to cell survival and induced mutagenesis. During 1999–2000, the UmuC superfamily had emerged, which consists of the following prototypic members: the E. coli UmuC, the E. coli DinB, the yeast Rad30, the human RAD30B, and the yeast Rev1. The corresponding biochemical activities are DNA polymerases V, IV, η, ι, and dCMP transferase, respectively. Recent studies of the UmuC superfamily are summarized and evidence is presented suggesting that this family of DNA polymerases is involved in translesion DNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.