Abstract

DNA polymerase eta is a Y family polymerase involved in translesion synthesis (TLS). Its action is initiated by simultaneous interaction between the PIP box in pol eta and PCNA and between the UBZ in pol eta and monoubiquitin attached to PCNA. Whereas monoubiquitination of PCNA is required for its interaction with pol eta during TLS, we now show that monoubiquitination of pol eta inhibits this interaction, preventing its functions in undamaged cells. Identification of monoubiquitination sites within pol eta nuclear localization signal (NLS) led to the discovery that pol eta NLS directly contacts PCNA, forming an extended pol eta-PCNA interaction surface. We name this the PCNA-interacting region (PIR) and show that its monoubiquitination is downregulated by various DNA-damaging agents. We propose that this mechanism ensures optimal availability of nonubiquitinated, TLS-competent pol eta after DNA damage. Our work shows how monoubiquitination can either positively or negatively regulate the assembly of a protein complex, depending on which substrates are targeted by ubiquitin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.