Abstract
Recent work has characterized rigorously what it means for one quantum system to simulate another and demonstrated the existence of universal Hamiltonians—simple spin lattice Hamiltonians that can replicate the entire physics of any other quantum many-body system. Previous universality results have required proofs involving complicated ‘chains’ of perturbative ‘gadgets.’ In this paper, we derive a significantly simpler and more powerful method of proving universality of Hamiltonians, directly leveraging the ability to encode quantum computation into ground states. This provides new insight into the origins of universal models and suggests a deep connection between universality and complexity. We apply this new approach to show that there are universal models even in translationally invariant spin chains in 1D. This gives as a corollary a new Hamiltonian complexity result that the local Hamiltonian problem for translationally invariant spin chains in one dimension with an exponentially small promise gap is PSPACE-complete. Finally, we use these new universal models to construct the first known toy model of 2D–1D holographic duality between local Hamiltonians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.