Abstract
Cerebral palsy (CP) is a heterogeneous group of neurodevelopmental disorders associated with lifelong motor impairment and disability. Current intervention programmes aim to capitalize on the neuroplasticity of the undamaged part of the brain to improve motor functions, by engaging individuals in active motor learning and training. In this review, we highlight recent animal studies (1) exploring cellular and molecular mechanisms contributing to neuroplasticity during motor training, (2) assessing the functional role of the mesocortical dopaminergic system in motor skill learning, and (3) exploring the impact of naturally occurring genetic variation in dopamine-related gene expression on the acquisition and performance of fine motor skills. Finally, the potential influence of the dopamine system on the outcome of motor learning interventions in cerebral palsy is discussed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have