Abstract
The dynamics of pure ionic liquids and solutions with acetonitrile have been investigated through quasielastic neutron scattering (QENS). The translational diffusive motion of the 1-butyl-3-methyl-imidazolium cation was revealed as a function of concentration and temperature. The diffusion coefficients obtained are in reasonably good agreement with molecular dynamics (MD) computer simulations based on a classical potential. The diffusive mobility of the cation dramatically increases when adding acetonitrile. This increase in diffusivity is directly related to a maximum in conductivity of these ionic liquid solutions and might pave the way for new design of electrolytes. The translational motions in pure ionic liquids are too slow to be resolved by our experiment. However, localized motion resembling rotation on a sphere of the measured proton signal could be identified in the pure ionic liquids.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have