Abstract

The two-dimensional connectivity is examined for mixed bilayers of dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) as a function of composition and temperature at constant pressure using the fluorescence recovery after photobleaching (FRAP) method. These phospholipid mixtures exhibit peritectic behavior with a large region in which both gel and liquid crystalline phases coexist. Dilauroyl phosphatidylethanolamine covalently linked through the amino function in its head group to the fluorescent nitrobenzodiazolyl group (NBD-DLPE) was used as the fluorescent probe in this study, because it was found to partition almost exclusively in the liquid crystalline phase. The results of these studies show the line of connectivity to be close to the liquidus line on the phase diagram over a rather broad range of concentrations. In this range, a gel phase comprising approximately 20% of the system disconnects a liquid crystalline phase comprising 80% of the system. The implications of this result are discussed for domain shape and the organization of biological membrane components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.