Abstract

For interstellar grains coated with water ice, the most important desorption mechanism at the edge of molecular clouds is photodesorption of water. To reveal details of the photodesorption mechanism, we have measured the translational and rotational energies of H2 O( v = 0) molecules photodesorbed from amorphous solid water and polycrystalline ice following excitation within the first absorption band using a 157 nm laser. The measured translational and rotational temperatures are 1800 K and 300 K, respectively. These energies are in good accord with those predicted by classical molecular dynamics calculations for the “kick-out” of an H2O molecule in the ice by an energetic H atom. The statistical ortho:para ratio of gOPR = 3 is appropriate for the Boltzmann rotational distribution of the H2O molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.