Abstract

Translation initiation, the first step of protein synthesis process is the principal regulatory step controlling translation and involves a pool of translation initiation factors. In plants, from recent studies it is becoming evident that these translation initiation factors impact various aspects of plant growth and development in addition to their role in protein synthesis. Eukaryotic translation initiation factor eIF5A is one such factor which functions in start site selection for the eIF2-GTP-tRNAi ternary complex within the ribosomal-bound preinitiation complex and also stabilizes the binding of GDP to eIF2. In the present study we have cloned and analysed a gene (eIF5a) encoding eIF5A from Picrorhiza (Picrorhiza kurrooa Royle ex Benth.) a medicinal plant of the western Himalayan region. The full length eIF5a cDNA consisted of 838 bp with an open reading frame of 480 bp, 88 bp 5' untranslated region and 270 bp 3' untranslated region. The deduced eIF5A protein contained 159 amino acids with a molecular weight of 17.359 kDa and an isoelectric point of 5.59. Secondary structure analysis revealed eIF5A having 24.53% α-helices, 8.81% β-turns, 23.27% extended strands and 43.40% random coils. pk-eIF5a transcript was found to be expressing during the active growth phase as well as during leaf senescence stage, however, highest expression was observed during leaf senescence stage. Further, its expression was up-regulated in response to exogenous application of abscisic acid. Both high intensity as well as low intensity light decreased the expression of pk-eIF5a. The findings suggest eIF5a to be an important candidate to develop genetic engineering based strategies for delaying leaf senescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.