Abstract

Bacteriophage Mu DNA synthesis is initiated during transposition by replication restart proteins PriA, DnaT and either PriB or PriC. The PriA-PriC pathway requires PriA's helicase activity and other host factors that promote the orderly transition from transpososome to replisome on the Mu DNA template. The host factor MRFalpha-PR, which removes obstacles to PriA binding and promotes the PriA-PriC pathway, was identified to be the translation initiation factor IF2. Purified isoform IF2-2, which is truncated at the N-terminal end, had full MRFalpha-PR activity whereas full-length IF2-1 was inactive. IF2-2 was bound to the Mu DNA template specifically at the step for prereplisome assembly. Prior steps in the orderly transition from transpososome were essential to promote efficient IF2-2 binding. Moreover, PriA helicase activity was subsequently needed to displace IF2-2, remodelling the template to permit replisome assembly. IF2's role in the transition mechanism as well as its function as G protein and translation factor suggest its potential to regulate DNA synthesis by this pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call