Abstract
School attendance and absenteeism are critical targets of educational policies and practices that often depend heavily on aggregated attendance/absenteeism data. School attendance/absenteeism data in aggregated form, in addition to having suspect quality and utility, minimizes individual student variation, distorts detailed and multilevel modeling, and obscures underlying causes and disparities of absenteeism. Recent advances in data analytics/mining and modeling may assist researchers and other stakeholders by evaluating large-scale data sets in more targeted ways to identify key root causes and patterns of school absenteeism in a particular community, school, or group of students. This would allow for more accurate educational policies tailored to unique local conditions and student/family circumstances. This article provides a summary of recent algorithm- and model-based efforts in this regard. Algorithm-based efforts include classification and regression tree analysis, ensemble analysis, support vector machines, receiver operating characteristic analysis, and random forests. Model-based efforts include multilevel modeling, structural equation modeling, latent class analysis, and meta-analytic modeling. We then illustrate how these efforts can enhance a full and nuanced understanding of the root, interconnected causes of absenteeism, improve early warning systems, and assist multi-tiered systems of support interventions for absenteeism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.