Abstract
In this paper, we investigate the evolution of spacelike curves in the Lorentz–Minkowski plane R12 along prescribed geometric flows (including the classical curve shortening flow or mean curvature flow as a special case), which correspond to a class of quasilinear parabolic initial boundary value problems, and can prove that this flow exists for all time. Moreover, we can also show that the evolving spacelike curves converge to a spacelike straight line or a spacelike grim reaper curve as time tends to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.