Abstract

In this work, the convergence analysis of explicit exponential time integrators based on general linear methods for quasi-linear parabolic initial boundary value problems is pursued. Compared to other types of exponential integrators encountering rather severe order reductions, in general, the considered class of exponential general linear methods provides the possibility of constructing schemes that retain higher-order accuracy in time when applied to quasi-linear parabolic problems. In view of practical applications, the case of variable time step sizes is incorporated. The convergence analysis is based upon two fundamental ingredients. The needed stability bounds, obtained under mild restrictions on the ratios of subsequent time step sizes, have been deduced in the recent work [C. Gonzalez and M. Thalhammer, SIAM J. Numer. Anal., 53 (2015), pp. 701--719]. The core of the present work is devoted to the derivation of suitable local and global error representations. In conjunction with the stability bound...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.