Abstract
This paper presents a generalization of Fine’s completeness theorem for transitive logics of finite width, and proves the Kripke completeness of transitive logics of finite “suc-eq-width”. The frame condition for each finite suc-eq-width axiom requires, in rooted transitive frames, a finite upper bound of cardinality for antichains of points with different proper successors. The paper also presents a generalization of Rybakov’s completeness theorem for transitive logics of prefinite width, and proves the Kripke completeness of transitive logics of prefinite “suc-eq-width”. The frame condition for each prefinite suc-eq-width axiom requires, in rooted transitive frames, a finite upper bound of cardinality for antichains of points that have a finite lower bound of depth and have different proper successors. We will construct continuums of transitive logics of finite suc-eq-width but not of finite width, and continuums of those of prefinite suc-eq-width but not of prefinite width. This shows that our new completeness results cover uncountably many more logics than Fine’s theorem and Rybakov’s theorem respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.