Abstract

We propose a scheme to generate W states based on transitionless-based shortcuts technique in cavity quantum electrodynamics (QED) system. In light of quantum Zeno dynamics, we first effectively design a system whose effective Hamiltonian is equivalent to the counter-diabatic driving Hamiltonian constructed by transitionless quantum driving, then, realize the W states' generation within this framework. For the sake of clearness, we describe two stale schemes for W states' generation via traditional methods: the adiabatic dark-state evolution and the quantum Zeno dynamics. The comparison among these three schemes shows the shortcut scheme is closely related to the other two but better than them. That is, numerical investigation demonstrates that the shortcut scheme is faster than the adiabatic one, and more robust against operational imperfection than the Zeno one. What is more, the present scheme is also robust against decoherence caused by spontaneous emission and photon loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.