Abstract

Abstract The equations of multimoment hydrodynamics supplemented with stochastic terms are used for numerical simulation of chaotic distortion of regular regimes in the problem on flow around a solid sphere. The influence of disordered perturbations arising in the medium due to external influences is investigated. The loss of stability is accompanied by a qualitative change in the behavior of flow. Each perturbation forces the unstable flow to behave purely individually. The possibility of interpreting each of the unstable flows in terms of some average hydrodynamic values passes away. This behavior is called the butterfly effect. Independence in the behavior of disordered perturbations disappears. Conservation laws force disordered perturbations to adapt their behavior in time and space to the behavior of hydrodynamic values. A change in the behavior of disordered perturbations leads to chaotic distortion of both the regular flow in the recirculating zone and the regular regime of vortex shedding. Distortion of regular regimes creates a turbulent flow pattern in the wake behind the sphere. Vortex shedding is called the regular component of turbulence. Disordered perturbations are called the chaotic component of turbulence. The loss of stability is responsible for the growth and accumulation of disordered perturbations in the wake behind the sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.