Abstract

This paper addresses the question of how chaotic scattering arises and evolves as a system parameter is continuously varied starting from a value for which the scattering is regular (i.e., not chaotic). Our results show that the transition from regular to chaotic scattering can occur via a saddle-center bifurcation, with further qualitative changes in the chaotic set resulting from a sequence of homoclinic and heteroclinic intersections. We also show that a state of ``fully developed'' chaotic scattering can be reached in our system through a process analogous to the formation of a Smale horse- shoe. By fully developed chaotic scattering, we mean that the chaotic-invariant set is hyperbolic, and we find for our problem that all bounded orbits can be coded by a full shift on three symbols. Observable consequences related to qualitative changes in the chaotic set are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.