Abstract

This paper discusses converged quantum mechanical scattering calculations for the reaction Cl + H2 → HCl + H and its reverse and analyzes them for the properties of quantized dynamical bottlenecks controlling the total and state-specific microcanonical-ensemble rate constants. These rate constants show clear evidence for quantized transition states. We assign bend and stretch quantum numbers to the transition states for total angular momentum J = 0 with parity P = +1, for J = 1 with P = +1 and −1, and for J = 2 and 6 with P = +1. Then, state-specific densities of reactive states (transition state spectra) are examined to obtain a detailed picture of the reaction. A quantal estimate of the rotational constant, B, for several different transition states is obtained by comparing transition state energies at different values of the total angular momentum. These quantal estimates are in good agreement with the values calculated from the moments of inertia, and this enables us to interpret the results in terms ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call