Abstract

Stone–Wales (SW) defects are possibly formed in graphene and other two-dimensional materials, and have multiple influence on their physical and chemical properties. In this study, the transition state of SW defects in graphene is determined with the fully discrete Peierls theory. Furthermore, the atomic formation process is investigated by means of ab-initio simulations. The atomic structure change and energetics of the SW transformation are revealed. It is found that the transition state is at the SW bond rotation of 34.5° and the activation energy barrier is about 12 eV. This work provides a new method to investigate SW transformations in graphene-like materials and to explore unknown SW-type defects in other 2D materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call