Abstract
Abstract The dependences of spin wave resonance (SWR) frequency on the surface anisotropy field, interface exchange coupling, symmetry, biquadratic exchange (BQE) interaction, film thickness, and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method. A remarkable increase of SWR frequency, except for energetically lower two modes, can be obtained in our model that takes the BQE interaction into account. Again, the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio. It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films. In addition, for bilayer ferromagnetic films, the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system. These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.