Abstract

Transition properties of a vertical conductor connecting two semi-infinite microstrip lines at different planes are analyzed by using dynamic solution techniques. This fundamental geometry is encountered in many microwave interconnect and packaging applications, and in particular when three-dimensional multilayer metallization techniques are employed. In order to compute the reflection and transmission properties of this three-dimensional discontinuity, a method of moments technique is employed. To this end, the Green's function of the multilayer shielded microstrip geometry is used. The surface current density distributions on the two semi-infinite microstrip lines are described in terms of the incident, reflected, and transmitted guided fundamental mode wave distributions plus a summation of current pulses in the region of discontinuity. The current on the vertical cylindrical connection line is also described in terms of a superposition of triangular shaped pulses. Application of the boundary conditions on the three conductors leads to a simultaneous linear system of equations by using a method of moments technique. Reflection and transmission coefficients are computed for several connection lines, and numerical results are presented. It is shown that a rather small connection conductor height can induce large reflection phenomena for an incident wave.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.