Abstract

To reduce the computation cost of configuration interaction (CI) method, a novel technique is used to calculate the coefficients of doubly excited determinants directly from orbital energies, orbital overlap matrix and electron population obtained from Hartree–Fock level run. This approach to approximate the coefficients of CI wave function is termed as transition probability approximated CI (TPA-CI). In principle, calculated dynamical electron correlation energies of TPA-CI and full CI (FCI) are equivalent. It is observed that computed TPA-CI correlation energies of hydrogen, water, ammonia and ozone are close to the FCI values, within 5% error. The potential energy curve of hydrogen molecule is also studied, and it is found that the energy is minimum at its equilibrium bond length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call